LearnTeD 2023 : Learning from Temporal Data - DSAA 2023
LearnTeD 2023 : Learning from Temporal Data - DSAA 2023

LearnTeD 2023 : Learning from Temporal Data - DSAA 2023

Thessaloniki, Greece
Event Date: October 09, 2023 - October 13, 2023
Submission Deadline: May 22, 2023
Notification of Acceptance: July 17, 2023
Camera Ready Version Due: August 07, 2023

Call for Papers


Learning from Temporal Data (LearnTeD)

special session of the
10th IEEE International Conference on Data Science and Advanced Analytics (DSAA 2023)

October 9-13, 2023, Thessaloniki, Greece

Website link:

Aims and Scope
Temporal information is all around us. Numerous important fields, including weather
and climate, ecology, transport, urban computing, bioinformatics, medicine, and finance,
routinely work with temporal data. Temporal data present a number of new challenges,
including increased dimensionality, drifts, complex behavior in terms of long-term
interdependence, and temporal sparsity, to mention a few. Hence, learning from temporal
data requires specialized strategies that are different from those used for static data.
Continuous cross-domain knowledge exchange is required since many of these difficulties
cut over the lines separating various fields. This special session aims to integrate the
research on learning from temporal data from various areas and to synthesize new concepts
based on statistical analysis, time series analysis, graph analysis, signal processing,
and machine learning.

The scope of the special session includes but is not limited to the following:
- Temporal data clustering
- Classification and regression of univariate and multivariate time series
- Early classification of temporal data
- Deep learning for temporal data
- Learning representation for temporal data
- Metric and kernel learning for temporal data
- Modeling temporal dependencies
- Time series forecasting
- Time series annotation, segmentation, and anomaly detection
- Spatial-temporal statistical analysis
- Functional data analysis methods
- Data streams
- Interpretable/explainable time-series analysis methods
- Dimensionality reduction, sparsity, algorithmic complexity, and big data challenges
- Benchmarking and assessment methods for temporal data
- Applications, including transport, urban computing, weather and climate, ecology,
bio-informatics, medical, and energy consumption on temporal data

Submission procedure
All papers should be submitted electronically via EasyChair (under the “Special Session” Track):

The length of each paper submitted to the Research tracks should be no more than ten (10) pages
and should be formatted following the standard 2-column U.S. letter style of the IEEE Conference
template. For further information and instructions, see the IEEE Proceedings Author Guidelines.

All submissions will be blind-reviewed by the Program Committee on the basis of technical quality,
relevance to the conference’s topics of interest, originality, significance, and clarity. Author
names and affiliations must not appear in the submissions, and bibliographic references must be
adjusted to preserve author anonymity. Submissions failing to comply with paper formatting and
authors’ anonymity will be rejected without reviews.

Because of the double-blind review process, non-anonymous papers that have been issued as technical
reports or similar cannot be considered for DSAA’2023. An exception to this rule applies to arXiv
papers that were published in arXiv at least a month prior to the DSAA’2023 submission deadline.
Authors can submit these arXiv papers to DSAA provided that the submitted paper’s title and abstract
are different from the one appearing in arXiv.

All accepted full-length special session papers will be published by IEEE in the DSAA main conference
proceedings under its Special Session scheme. All papers will be submitted for inclusion in the
IEEEXplore Digital Library.

High-quality accepted papers will be recommended to a Special Issue of the International Journal of
Data Science and Analytics on "Learning from temporal data" through a fast-track process.

Important Dates
Paper Submission Deadline: May 29, 2023
Paper Notification: July 17, 2023
Camera-ready Submission: August 7, 2023

Organizing Committee

Track Chairs
Albert Bifet, Waikato University, New Zealand
João Mendes Moreira, University of Porto & LIAAD-INESC TEC, Portugal
Joydeep Chandra, Indian Institute of Technology Patna, India

Program Committee
Animesh Chaturvedi, IIIT Dharwad, India
Balaraman Ravindran, IIT Madras, India
Bivas Mitra, IIT Kharagpur, India
Carlos Abreu Ferreira, INESC TEC, Portugal
Debraj Das, IIT Bombay, India
Heitor Murilo Gomes, Victoria University of Wellington, New Zealand
Ingo Scholtes, University of Würzburg, Germany
Maria Eduarda Silva, Universidade do Porto, Portugal
Mirco Nanni, ISTI-CNR, Italy
Nuno Moniz, University of Notre Dame, USA
Paulo Cortez, Universidade do Minho, Portugal
Raquel Menezes, Universidade do Minho, Portugal
Rita Ribeiro, Universidade do Porto, Portugal
Sourangshu Bhattacharya, IIT Kharagpur, India
Srijith P.K., IIT Hyderabad, India
Vitor Cerqueira, Dalhousie University, Canada

Publicity Chairs
Carlos Abreu Ferreira, Instituto Politécnico do Porto, Portugal
Shruti Saxena, Indian Institute of Technology Patna, India

Organizing Committee Contact Person:
[email protected]

Credits and Sources

[1] LearnTeD 2023 : Learning from Temporal Data - DSAA 2023

Check other Conferences, Workshops, Seminars, and Events


JDSA-LearnTeD 2024: JDSA special isssue on Learning from Temporal data
ML4ITS2023 2023: [EXTENDED DEADLINE] 2nd CFP - ML4ITS2023 Machine Learning for Irregular Time Series @ ECML/PKDD
Turin, Italy
Sep 22, 2023
XAI-TS 2023: Explainable AI for Time Series: Advances and Applications
Sep 18, 2023
AALTD@ECML 2023: International Workshop on Advanced Analytics and Learning on Temporal Data
Sep 18, 2023
AALTD@ECML 2022: Workshop on Advanced Analytics and Learning on Temporal Data
Grenoble, France
Sep 19, 2022


Informed ML for Complex Data@ESANN 2024: Informed Machine Learning for Complex Data special session at ESANN 2024
Bruges, Belgium
Oct 9, 2024
ICBDM 2024: 2024 5th International Conference on Big Data in Management (ICBDM 2024)
Chiang Mai, Thailand
Dec 14, 2024
BDCAT 2024: IEEE/ACM Int’l Conf. on Big Data Computing, Applications, and Technologies
Sharjah, UAE
Dec 16, 2024
HAIS 2024: 19th International Conference on Hybrid Artificial Intelligence Systems
Salamanca, Spain
Oct 9, 2024
CBW 2024: 5th International Conference on Cloud, Big Data and Web Services
Vancouver, Canada
May 25, 2024


NLPAI 2024: 2024 5th International Conference on Natural Language Processing and Artificial Intelligence (NLPAI 2024)
Chongqing, China
Jul 12, 2024
ICAITE 2024: 2024 the International Conference on Artificial Intelligence and Teacher Education (ICAITE 2024)
Beijing, China
Oct 12, 2024
DL for Neuro-heuristic Brain Analysis 2024: Workshop on Deep Learning for Neuro-heuristic Brain Analysis @ ICANN'24
Lugano, Switzerland
Sep 17, 2024
Informed ML for Complex Data@ESANN 2024: Informed Machine Learning for Complex Data special session at ESANN 2024
Bruges, Belgium
Oct 9, 2024
LearnAut 2024: Learning and Automata
Tallinn, Estonia
Jul 7, 2024