IMPACT SCORE JOURNAL RANKING CONFERENCE RANKING Conferences Journals Workshops Seminars SYMPOSIUMS MEETINGS BLOG LaTeX 5G Tutorial Free Tools
IncrLearn 2022 : Incremental classification and clustering, concept drift, novelty detection, active learning in big/fast data context
IncrLearn 2022 : Incremental classification and clustering, concept drift, novelty detection, active learning in big/fast data context

IncrLearn 2022 : Incremental classification and clustering, concept drift, novelty detection, active learning in big/fast data context

Orlando
Event Date: November 30, 2022 - November 30, 2022
Submission Deadline: September 02, 2022
Notification of Acceptance: September 23, 2022
Camera Ready Version Due: October 01, 2022




Call for Papers

Workshop on
Incremental classification and clustering, concept drift, novelty detection, active learning in big/fast data context

In conjunction with
22st IEEE International Conference on Data Mining (ICDM 2022)
Title: Incremental classification and clustering, concept drift, novelty detection, active learning in big/fast data context

Description:

The development of dynamic information analysis methods, like incremental classification/clustering, concept drift management novelty detection techniques and active learning is becoming a central concern in a bunch of applications whose main goal is to deal with information which is varying over time or with information flows that can oversize memory storage or computation capacity. These applications relate themselves to very various and highly strategic domains, including web mining, social network analysis, adaptive information retrieval, anomaly or intrusion detection, process control and management recommender systems, technological and scientific survey, and even genomic information analysis, in bioinformatics.

The term “incremental” is often associated to the terms evolutionary, adaptive, interactive, on-line, or batch. Most of the learning methods were initially defined in a non-incremental way. However, in each of these families, were initiated incremental methods making it possible to consider the temporal component of a data flow or to achieve learning on huge/fast datasets in a tractable way. In a more general way incremental classification/clustering algorithms and novelty detection approaches are subjected to the following constraints:

1. Potential changes in the data description space must be considered;
2. Possibility to be applied without knowing as a preliminary all the data to be analyzed;
3. Taking into account of a new data must be carried out without making intensive use of the already considered data;
4. Result must but available after insertion of all new data.

The above-mentioned constraints clearly follow the VVV (Volume-Velocity and Variety) rule and thus directly fit with big/fast data context.

This workshop aims to offer a meeting opportunity for academics and industry-related researchers, belonging to the various communities of Computational Intelligence, Machine Learning, Experimental Design, Data Mining and Big/Fast Data Management to discuss new areas of incremental classification, concept drift management and novelty detection and on their application to analysis of time varying information and huge dataset of various natures. Another important aim of the workshop is to bridge the gap between data acquisition or experimentation and model building.

Through an exhaustive coverage of the incremental learning area workshop will provide fruitful exchanges between plenaries, contributors and workshop attendees. The emerging big/fast data context will be taken into consideration in the workshop.
The set of proposed incremental techniques includes, but is not limited to:

• Novelty detection algorithms and techniques
• Semi-supervised and active learning approaches
• Adaptive hierarchical, k-means or density-based methods
• Adaptive neural methods and associated Hebbian learning techniques
• Incremental deep learning
• Multiview diachronic approaches
• Probabilistic approaches
• Distributed approaches
• Graph partitioning methods and incremental clustering approaches based on attributed graphs
• Incremental clustering approaches based on swarm intelligence and genetic algorithms
• Evolving classifier ensemble techniques
• Incremental classification methods and incremental classifier evaluation
• Dynamic feature selection techniques
• Clustering of time series
• Learning on data streams
• Visualization methods for evolving data analysis results

The list of application domain includes, but it is not limited to:

• Evolving textual information analysis
• Evolving social network analysis
• Dynamic process control and tracking
• Intrusion and anomaly detection
• Genomics and DNA micro-array data analysis
• Adaptive recommender and filtering systems
• Scientometrics, webometrics and technological survey
• Incremental learning in LPWAN and IoT context

Important dates:

• Paper submission: September 2, 2022
• Notification of acceptance: September 23, 2022
• Camera-ready: October 1, 2022
• ICDM 2022 Conference: November 30, 2022

Submission Guidelines:

• Follow the regular submission guidelines of ICDM 2022 (https://www.wi-lab.com/cyberchair/2022/icdm22/scripts/submit.php?subarea=DM)
Paper will be triple blind reviewed. The accepted papers will appear in ICDM workshops proceedings.


Credits and Sources

[1] IncrLearn 2022 : Incremental classification and clustering, concept drift, novelty detection, active learning in big/fast data context


Check other Conferences, Workshops, Seminars, and Events


OTHER CLUSTERING EVENTS

IDM 2022: Workshop on interactive data mining @ ECML PKDD
Grenoble
Sep 23, 2022
SMPS 2022: 10th International Conference on Soft Methods in Probability and Statistics
Valladolid, Spain
Sep 14, 2022
CBR-MD 2020: International Workshop Case-Based Reasoning
New York
Jul 17, 2020
CBR 2019: International Workshop Case-Based Reasoning CBR-MD 2019
New York
Jul 19, 2019
SHOW ALL

OTHER CLASSIFICATION EVENTS

ICDM 2023: 23th Industrial Conference on Data Mining
New York, USA
Jul 12, 2023
FSDM 2022: 8th International Conference on Fuzzy Systems and Data Mining
Xiamen, China
Nov 4, 2022
IFCS 2022: Classification and Data Science in the Digital Age
Portugal
Jul 19, 2022
MLDM 2023: 18th International Conference on Machine Learning and Data Mining
New York, USA
Jul 16, 2023
NoDaLiDa 2019: Second Call for Participation - FinTOC Shared-task @FNP2019 @NoDaLiDa2019
Turku Finland
Apr 15, 2019
SHOW ALL