Categories |
![]()
TELECOMMUNICATION
![]()
WIRELESS
![]()
NETWORKING
|
About |
AICT 2021 conference tracks:Trends on protocols and communications models DNS resolvers; Scheduling streamed information; Adaptive streaming; TCP-based streaming; Impatience in cellular networks; Analysis of transient phases; Setup delays servers; Spatial-temporal traffic models; Stability models; Rendezvous algorithms; Network coding; Opportunistic protocols; Cooperative data exchange; Energy efficient-contention protocols; Named data networking; Adaptive contention window; Network mobility models; Spectrum aggregation schemes; Smart meters; Dynamic load; Environment adaptive routing protocols; Geographic and virtual coordinates; High spectral efficiency communications; Power constraints; Video broadcast; Multicell networks; Energy harvesting; Interference avoidance; MIMO and massive MIMO; Channel feedback protocols; Computation offloading; Path-cooperative transport New telecommunications technologies Software defined data centers; Botnet in SDNs; Software defined 5G networks; HetNets and 5G; Smart buildings and IoT; Secure SDNs; Standardization for IoTs; 4G to 5G translation; Managing 5G LTE-Advanced networks; LTE heterogeneous networks; LTE-R measurements; Scheduling for LTE-Advanced; Traffic with Big Data; QoE-aware radio; QoS and QoE in LTE networks; Telecommunications in Smart Cities; IoT virtual networks; Device-to-device Internet; Mobile clouds; Smart and sustainable cities; Public data centers; Traffic profiles in data centers; Smart energy; Car Connectivity; Green communications systems Trends on telecommunications features and services Cloud services for communities and citizens; Mobile location analytics; Video distribution networks; Dynamic video streaming; Cross-layer energy optimization; Power-aware media; Digital platforms regulation; Content delivery networks; M2M protocols; Identity management; Converged communication networks; Web-based communication services; Node localizations; Indoor positioning; Management plane; Community structure detection; Preventing DDoS attacks; Multifactor authentication; Man-in-the-middle attacks; Bundle streaming service; Self-organizing cloud cells; Soft-coded and hard-coded relaying Signal processing, protocols and standardization Standardization (IEEE 802.17, Policy Models, Etc.); IEEE 802.11 engineering; Telecommunications protocol engineering; Future networks: protocol and standards; Standardization (IEEE 802.15, IEEE 802.16); Communication theory, signal processing, modulation; Modulation, coding and synchronization; Propagation, antennas and channel characterization; Signal separation and Interference rejection; Critical infrastructure protection Architectures and communication technologies for 4G and 5G wireless networks 5G technologies and networking; Mobile network expansion solutions (small cells, Cloud-RAN, etc.); 5G radio-access networks (RAN); D2D communications in cellular networks; Aggregation techniques and interaction with unlicensed wireless technologies; Communications over mmWave spectrum; End-to-end network architecture and infrastructure; Interworking between heterogeneous networks and technologies; Automated management, orchestration and operation of network functions; Software defined networking (SDN) and 5G; Mobility management, energy efficiency, power cost reduction in 5G networks; Network function virtualization (NFV) of small cells; Self-organizing network functionalities for virtualized small cells; The role of open source software in 5G; Indoor/outdoor positioning; Massive connectivity handling; Technoeconomics of future mobile networks; New telecommunications business models Ad Hoc, autonomic and sensor networks Autonomic home networking; Sensor, mesh, and Ad hoc networks; Programmable networks; Active networks; Self-organization and network reconfiguration; Partial and intermittent resources and services; Unicast and multicast routing; Radio resource sharing in wireless networks; Energy-efficient communications; Vehicular Ad hoc networks; Underwater sensor networks; Emerging sensor technologies; Intelligent video surveilance; Multi-sensor surveillance; Wireless technologies 4G, 5G and 6G Mobile communications services; Evolution from 4G to 5G and beyond; Wireless multimedia and networks and systems; Cellular and Ad hoc networks; Mobile broadband technologies; Mobile software (agents); Wireless access (WPAN, WLAN, WLL); Wireless communications antennas and propagation and transmission technologies; Vertical, horizontal and diagonalhandover; Broadband wireless technology (HSDPA, HSUPA, LTE, Wimax, Wiran); Cross-layer modeling and design; Heterogeneity and diversity; Ultra-wideband communications (UWB); Wireless hacking; Management, operation and control networks Monitoring telecommunicaitons systems; Network management contingency challenges; Real-time traffic and QoS; Performance and QoS, traffic engineering (MPLS, Diffserv, Intserv, Etc.); Telecommunications management and control of heterogeneous networks; Mobility control and mobility engineering; Mobile video surveillance; Mobility and QoS management; Communications networks security; Information security; IPR and network security; Core technologies and access technologies and networks Wireless-fiber convergence; Metro/Access networks; Broadband access networks and services; Next Generation Networks and technologies; Future Internet; Inteligent & Smart networks; Grid, Cluster and Internet computing; Designing and management of optical networks; Performance of optical networks; Future technologies in optical communications; PLC (Homeplug, OPERA, UPA, CEPCA, IEEE, HD-PLC Alliance); Future applications and services Service-oriented architectures; E-Learning and mobile learning on telecommunications; SOHO (Small Offices/Home Offices; Emerging telecommunications software tools; Object and component technologies in telecommunication software; Platforms for Web Services-based applications and services; Web Services communications, applications, and performance; Applications in telemedicine; Security and trust in future services applications; Optical Technologies Optical internetworking architectures; Novel architectures for optical routers and switches; Optical packet / burst switching; Optical multi-wavelength label switching; Optical network performance modeling; Optical network control and management; Measurement, monitoring and supervision techniques; Security and privacy in optical networks; Optical access networks designs and protocols; High speed optical LANs and gigabit Ethernet; Energy efficiency in optical networks; Inter-working between optical and wireless networks; Optical Grids, optical networking for cloud computing; Optical integrated circuits and novel transmission methods; Standards for optical internetworking; Optical networks for future Internet design; Multi-domain routing protocols for IP over optical networks; Control and management protocols for IP over optical networks; Next-generation IP networking and Optical Internet; Development prospect for Optical Internet; Optical transmission systems and technologies; Optical access systems and technologies; Optical devices Cognitive radio Cognitive radio technologies and opportunistic spectrum utilization; Spectrum sensing technologies; Dynamic spectrum access; Information theory and performance limits of dynamic spectrum access; Distributed algorithms for spectrum detection and cooperative spectrum sensing; Inter- and Intra- standards interoperability; Cross-layer algorithms based on spectrum sensing techniques; Advanced signal processing techniques for cognitive radio; Physical-layer design of software radio and cognitive radio transceivers; Interference and coexistence analysis; Radio resource allocation; Decision making; Game theory; Cognitive radio with reinforcement learning; SWR and CR management; Cognitive radio sensing in the large and feature detection; Spectrum and performance management in cognitive radio networks; Cognitive radio applications; Future Internet with cognitive technologies; Flexible and opportunistic wireless access; Multimedia communications through cognitive networks; Regulatory policies on spectrum sharing for future broadband networks; Cognitive radio standards; Cognitive radio architecture for equipments; Enabling SDR technology for cognitive radio; Hardware reconfigurability; Testbbeds Teletraffic modeling and management Traffic and performance measurements; Traffic characterization and modeling; Trends and patterns; Scaling phenomena; Packet and flow level models; Traffic control and QosS; Queuing theory and queuing networks; Performance evaluation; Scheduling and admission control; Reservation and priority mechanisms; Overload control; Broadcast and multicast traffic control; Analytical and numerical analysis; Network design and optimization of wired and wireless networks; Mobility and resource management; Traffic monitoring and management; Traffic engineering in multi-technology networks; Internet traffic engineering; Traffic grooming; Simulation methodology for communications networks; Simulation models and tools; E-Learning and telecommunications Architecture of learning technology systems; Advanced uses of multimedia and hypermedia; Integrated learning and educational environments; National and international projects on e-learning and telecommunications; Remote and wireless teaching technologies; Navigational aspects for learning; e-Learning industry and universities programs; Anytime/anywhere e-learning and wearable network devices; Tutoring e-learning applications and services; Cost models for e-learning on telecommunications; Satellite technologies for e-learning; Teaching e-learning methodologies and technologies; Adaptive e-learning and intelligent applications/tools; Agent technology; Training e-learning teachers; Practical uses of authoring tools; Application of metadata and virtual reality; Collaborative learning/groupware; Intelligent tutoring systems; Internet based systems; Application of instructional design theories; Evaluation of learning technology systems; Standards related activities |
Summary |
AICT 2021 : The Seventeenth Advanced International Conference on Telecommunicati will take place in Valencia, Spain. It’s a 5 days event starting on May 30, 2021 (Sunday) and will be winded up on Jun 03, 2021 (Thursday). AICT 2021 falls under the following areas: TELECOMMUNICATION, WIRELESS, NETWORKING, etc. Submissions for this Conference can be made by Mar 02, 2021. Authors can expect the result of submission by Apr 12, 2021. Upon acceptance, authors should submit the final version of the manuscript on or before May 01, 2021 to the official website of the Conference. Please check the official event website for possible changes before you make any travelling arrangements. Generally, events are strict with their deadlines. It is advisable to check the official website for all the deadlines. Other Details of the AICT 2021
|
Credits and Sources |
[1] AICT 2021 : The Seventeenth Advanced International Conference on Telecommunicati |